Step 1: Find the magnitude of vector v
$$|\vec{v}| = \sqrt{3^2 + 0^2 + 4^2} = \sqrt{25} = 5$$
Step 2: Find the unit vector
$$\hat{v} = \frac{1}{|\vec{v}|} \vec{v} = \frac{1}{5}(3, 0, 4) = \left(\frac{3}{5}, 0, \frac{4}{5}\right)$$
Step 3: Calculate the dot product
$$\vec{u} \cdot \hat{v} = (2, -1, 3) \cdot \left(\frac{3}{5}, 0, \frac{4}{5}\right)$$
$$= 2\left(\frac{3}{5}\right) + (-1)(0) + 3\left(\frac{4}{5}\right)$$
$$= \frac{6}{5} + 0 + \frac{12}{5} = \frac{18}{5}$$
Step 4: Find the vector projection
Vector projection of \(\vec{u}\) along \(\hat{v}\) is:
$$(\vec{u} \cdot \hat{v})\hat{v} = \frac{18}{5}\left(\frac{3}{5}, 0, \frac{4}{5}\right)$$
$$= \left(\frac{18}{5} \cdot \frac{3}{5}, \frac{18}{5} \cdot 0, \frac{18}{5} \cdot \frac{4}{5}\right)$$
$$= \left(\frac{54}{25}, 0, \frac{72}{25}\right)$$
Final Answer:
$$= (2.16, 0, 2.88)$$
For more details, please contact me here.