Step 1: Find the magnitude of vector v

$$|\vec{v}| = \sqrt{3^2 + 0^2 + 4^2} = \sqrt{25} = 5$$

Step 2: Find the unit vector

$$\hat{v} = \frac{1}{|\vec{v}|} \vec{v} = \frac{1}{5}(3, 0, 4) = \left(\frac{3}{5}, 0, \frac{4}{5}\right)$$

Step 3: Calculate the dot product

$$\vec{u} \cdot \hat{v} = (2, -1, 3) \cdot \left(\frac{3}{5}, 0, \frac{4}{5}\right)$$ $$= 2\left(\frac{3}{5}\right) + (-1)(0) + 3\left(\frac{4}{5}\right)$$ $$= \frac{6}{5} + 0 + \frac{12}{5} = \frac{18}{5}$$

Step 4: Find the vector projection

Vector projection of \(\vec{u}\) along \(\hat{v}\) is:

$$(\vec{u} \cdot \hat{v})\hat{v} = \frac{18}{5}\left(\frac{3}{5}, 0, \frac{4}{5}\right)$$ $$= \left(\frac{18}{5} \cdot \frac{3}{5}, \frac{18}{5} \cdot 0, \frac{18}{5} \cdot \frac{4}{5}\right)$$ $$= \left(\frac{54}{25}, 0, \frac{72}{25}\right)$$

Final Answer:

$$= (2.16, 0, 2.88)$$


For more details, please contact me here.