Approximation of \( \sqrt[3]{26} \) using Taylor Expansion:

Choose \( x_0 = 27 \) because \( \sqrt[3]{27} = 3 \). Write:

$$x = x_0 + \Delta x, \quad x_0 = 27, \ \Delta x = -1.$$

The function is \( f(x) = x^{1/3} \). The 3-term Taylor expansion:

$$f(x) \approx f(x_0) + \Delta x \, f'(x_0) + \frac{\Delta x^2}{2} f''(x_0).$$

Table of derivatives:

n \( f^{(n)}(x) \) \( f^{(n)}(x_0) \)
0 \( x^{1/3} \) \( 3 \)
1 \( \frac{1}{3} x^{-2/3} \) \( \frac{1}{27} \)
2 \( -\frac{2}{9} x^{-5/3} \) \( -\frac{2}{2187} \)

Insert values into expansion:

$$f(x) \approx 3 + (-1)\left(\frac{1}{27}\right) + \frac{(-1)^2}{2}\left(-\frac{2}{2187}\right)$$ $$= 3 - 0.037037 - 0.00045724737 = 2.962506.$$

Exact value using calculator: \( \sqrt[3]{26} \approx 2.962496 \).

Truncation error:

$$E = \lvert \sqrt[3]{26} - S_3(27) \rvert = \lvert 2.962496 - 2.962506 \rvert = 9.647185 \times 10^{-6}.$$

Relative error:

$$\frac{E}{\sqrt[3]{26}} = \frac{9.647185 \times 10^{-6}}{2.962496} \approx 3.256438 \times 10^{-6}.$$


For more details, please contact me here.