Approximation of \( \sqrt[4]{17} \) using Taylor Expansion:

Choose \( x_0 = 16 \) because \( \sqrt[4]{16} = 2 \). Write:

$$17 = 16 + 1 = x_0 + \Delta x, \quad \text{where } x_0 = 16, \ \Delta x = 1.$$

The function is \( f(x) = x^{1/4} \). The 3-term Taylor expansion:

$$f(x) \approx f(x_0) + \Delta x \, f'(x_0) + \frac{\Delta x^2}{2} f''(x_0).$$

Table of derivatives:

n \( f^{(n)}(x) \) \( f^{(n)}(x_0) \)
0 \( x^{1/4} \) \( 16^{1/4} = 2 \)
1 \( \frac{1}{4} x^{-3/4} \) \( \frac{1}{4} \cdot 16^{-3/4} = \frac{1}{32} \)
2 \( -\frac{3}{16} x^{-7/4} \) \( -\frac{3}{16} \cdot 16^{-7/4} = -\frac{3}{2048} \)

Insert values into expansion:

$$f(x) \approx 2 + 1 \cdot \frac{1}{32} + \frac{1^2}{2} \cdot \left(-\frac{3}{2048}\right)$$ $$= 2 + 0.03125 - 0.00073242 = 2.03051758.$$

Exact value using calculator: \( \sqrt[4]{17} \approx 2.030543185 \).

Truncation error:

$$E = \lvert \sqrt[4]{17} - S_3(16) \rvert = \lvert 2.030543185 - 2.03051758 \rvert = 2.5607 \times 10^{-5}.$$

Relative error:

$$\frac{E}{\sqrt[4]{17}} = \frac{2.5607 \times 10^{-5}}{2.030543185} \approx 1.261 \times 10^{-5}.$$


For more details, please contact me here.