Using the series expansion of \( \ln(1+x) \) in a limit:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

Substitute into the limit:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{x - \frac{x^2}{2} + \frac{x^3}{3} + \dots}{x}$$
$$= \lim_{x \to 0} \left(1 - \frac{x}{2} + \frac{x^2}{3} + \dots \right) = 1$$
$$\text{ANSWER: } \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$


For more details, please contact me here.