Taylor Series Solution to Exercise 2 - General formula:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + x f^{(1)}(0) + \frac{x^2}{2!} f^{(2)}(0) + \frac{x^3}{3!} f^{(3)}(0) + \dots$$

Given \( f(x) = \ln(1+x) \), compute derivatives at \( x = 0 \):

n \( f^{(n)}(x) \) \( f^{(n)}(0) \)
0 \( \ln(1+x) \) \( 0 \)
1 \( (1+x)^{-1} \) \( 1 \)
2 \( -(1+x)^{-2} \) \( -1 \)
3 \( 2(1+x)^{-3} \) \( 2 \)
4 \( -(3 \cdot 2)(1+x)^{-4} \) \( -(3 \cdot 2) \)
5 \( (4 \cdot 3 \cdot 2)(1+x)^{-5} \) \( (4 \cdot 3 \cdot 2) \)

Series expansion:

$$\ln(1+x) = 0 + x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

Compact form:

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$$


For more details, please contact me here.