Taylor Series - Exercise 1 Solution:

$$f(x) = \sum_{n=0}^{\infty} \frac{x^n f^{(n)}(0)}{n!} = f(0) + x f^{(1)}(0) + \frac{x^2}{2!} f^{(2)}(0) + \dots$$

We need to determine \( f^{(n)}(0) \) given \( f(x) = \cos x \).

n \( f^{(n)}(x) \) \( f^{(n)}(0) \)
0 \( \cos x \) \( \cos 0 = 1 \)
1 \( -\sin x \) \( -\sin 0 = 0 \)
2 \( -\cos x \) \( -1 \)
3 \( \sin x \) \( 0 \)
4 \( \cos x \) \( 1 \)

Using the table:

$$f(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$


For more details, please contact me here.