Double Integral Evaluation - Solution to Exercise 3
$$I = \int_{y=0}^{2} \int_{x=0}^{3} e^{x-y} \, dx \, dy
= \int_{0}^{2} e^{-y} \Bigg( \int_{0}^{3} e^{x} \, dx \Bigg) dy
= \int_{0}^{2} e^{-y} \Bigg[ e^{x} \Bigg]_{0}^{3} dy
= \int_{0}^{2} e^{-y} (e^{3} - 1) \, dy$$
$$= (e^{3} - 1) \int_{0}^{2} e^{-y} \, dy
= (e^{3} - 1) \Bigg[ -e^{-y} \Bigg]_{0}^{2}
= (e^{3} - 1) (-e^{-2} + 1)$$
$$= (e^{3} - 1)(1 - e^{-2})
= e^{3} - e^{3}e^{-2} - 1 + e^{-2}
= e^{3} - e + e^{-2} - 1$$
$$\approx 16.502$$
For more details, please contact me here.