Using Laplace transform properties: \[ \mathcal{L}\{y''\}=s^2Y(s)-sy(0)-y'(0),\quad \mathcal{L}\{y\}=Y(s). \] So \[ s^2Y(s)-sy(0)-y'(0)+4Y(s)=0. \]
With $y(0)=0$ and $y'(0)=1$: \[ s^2Y(s)-0-1+4Y(s)=0 \;\Rightarrow\; (s^2+4)Y(s)=1. \]
\[ Y(s)=\frac{1}{s^2+4}. \]
\[ Y(s)=\frac{1}{2}\cdot\frac{2}{s^2+2^2}. \]
Using $\mathcal{L}^{-1}\{\tfrac{a}{s^2+a^2}\}=\sin(at)$: \[ y(t)=\frac{1}{2}\sin(2t). \]