Laplace Transform Exercises

Find the Laplace transforms

d) \( f(t) = \sin(\pi t) \)

\[ F(s) = \mathcal{L}\{ \sin(\pi t) \} = \frac{\pi}{s^2 + \pi^2} \]
\[ \boxed{\frac{\pi}{s^2 + \pi^2}} \]

e) \( f(t) = \begin{cases} 3, & 0 < t < 2 \\ -1, & 2 \le t < 4 \\ 0, & t \ge 4 \end{cases} \)

Use the Laplace transform definition:

\[ F(s) = \int_{0}^{\infty} f(t)e^{-st}\,dt \]
\[ F(s) = \int_{0}^{2} 3e^{-st}\,dt + \int_{2}^{4} (-1)e^{-st}\,dt + 0 \]
\[ F(s) = \frac{3 - 4e^{-2s} + e^{-4s}}{s} \]
\[ \boxed{\frac{3 - 4e^{-2s} + e^{-4s}}{s}} \]

f) \( f(t) = \sin(t)\cos(t) \)

\[ f(t) = \tfrac{1}{2}\sin(2t) \]
\[ F(s) = \tfrac{1}{2}\mathcal{L}\{\sin(2t)\} = \tfrac{1}{2}\frac{2}{s^2 + 4} = \frac{1}{s^2 + 4} \]
\[ \boxed{\frac{1}{s^2 + 4}} \]


For more details, please contact me here.