| Problem | Time Domain / Laplace Domain |
|---|---|
| a) Laplace | \(\mathcal{L}\{3e^{-4t}\}=\dfrac{3}{s+4}\) |
| b) Laplace | \(\mathcal{L}\{2t^{2}\}=\dfrac{4}{s^{3}}\) |
| c) Laplace | \(\mathcal{L}\{4\cos(5t)\}=\dfrac{4s}{s^{2}+25}\) |
| d) Laplace | \(\mathcal{L}\{\sin(\pi t)\}=\dfrac{\pi}{s^{2}+\pi^{2}}\) |
| e) Laplace (piecewise) | \(F(s)=\dfrac{3-4e^{-2s}+e^{-4s}}{s}\) |
| f) Laplace | \(\mathcal{L}\{\sin t\cos t\}=\dfrac{1}{s^{2}+4}\) |
| a) Inverse Laplace | \(\mathcal{L}^{-1}\{ \dfrac{2s^{2}-4}{(s-2)(s+1)(s-3)}\}=-\tfrac{1}{6}e^{-t}-\tfrac{4}{3}e^{2t}+\tfrac{7}{2}e^{3t}\) |
| b) Inverse Laplace | \(\mathcal{L}^{-1}\{ \dfrac{3s+1}{(s-1)(s^{2}+1)}\}=2e^{t}-2\cos t+\sin t\) |