Fourier Series Term Evaluation:
We evaluate:
$$2\Big[(-1)^n(6 - n^2\pi^2)/n^3\Big]\sin(nx) \quad \text{for } n = 1, 2, 3.$$
Step-by-step:
For \(n = 1\):
$$2\Big[(-1)^1(6 - 1^2\pi^2)/1^3\Big]\sin(x) = -2(6 - \pi^2)\sin(x).$$
For \(n = 2\):
$$2\Big[(1)(6 - 4\pi^2)/8\Big]\sin(2x) = \frac{6 - 4\pi^2}{4}\sin(2x).$$
For \(n = 3\):
$$2\Big[(-1)(6 - 9\pi^2)/27\Big]\sin(3x) = -\frac{6 - 9\pi^2}{27}\sin(3x).$$
Series representation:
$$-2(6 - \pi^2)\sin(x) \;+\; \frac{6 - 4\pi^2}{4}\sin(2x) \;-\; \frac{6 - 9\pi^2}{27}\sin(3x) + \dots$$
For more details, please contact me here.